With the increased usage of AI accelerators on mobile and edge devices, on-device machine learning (ML) is gaining popularity. Thousands of proprietary ML models are being deployed today on billions of untrusted devices. This raises serious security concerns about model privacy. However, protecting model privacy without losing access to the untrusted AI accelerators is a challenging problem. In this paper, we present a novel on-device model inference system, ShadowNet. ShadowNet protects the model privacy with Trusted Execution Environment (TEE) while securely outsourcing the heavy linear layers of the model to the untrusted hardware accelerators. ShadowNet achieves this by transforming the weights of the linear layers before outsourcing them and restoring the results inside the TEE. The non-linear layers are also kept secure inside the TEE. ShadowNet's design ensures efficient transformation of the weights and the subsequent restoration of the results. We build a ShadowNet prototype based on TensorFlow Lite and evaluate it on five popular CNNs, namely, MobileNet, ResNet-44, MiniVGG, ResNet-404, and YOLOv4-tiny. Our evaluation shows that ShadowNet achieves strong security guarantees with reasonable performance, offering a practical solution for secure on-device model inference.
translated by 谷歌翻译
The usage of technologically advanced devices has seen a boom in many domains, including education, automation, and healthcare; with most of the services requiring Internet connectivity. To secure a network, device identification plays key role. In this paper, a device fingerprinting (DFP) model, which is able to distinguish between Internet of Things (IoT) and non-IoT devices, as well as uniquely identify individual devices, has been proposed. Four statistical features have been extracted from the consecutive five device-originated packets, to generate individual device fingerprints. The method has been evaluated using the Random Forest (RF) classifier and different datasets. Experimental results have shown that the proposed method achieves up to 99.8% accuracy in distinguishing between IoT and non-IoT devices and over 97.6% in classifying individual devices. These signify that the proposed method is useful in assisting operators in making their networks more secure and robust to security breaches and unauthorized access.
translated by 谷歌翻译
意见摘要是创建摘要的任务,以获取用户评论中的流行意见。在本文中,我们介绍了Geodesic Summarizer(GeoSumm),这是一种新型系统,可执行无监督的提取意见摘要。 GeoSumm涉及基于编码器的表示模型,该模型将文本表示为潜在语义单元的分布。 GeoSumm通过在多个解码器层上对预训练的文本表示进行字典学习来生成这些表示。然后,我们使用这些表示形式使用新型的基于测量距离的评分机制来量化审查句子的相关性。我们使用相关得分来确定流行意见,以构成一般和特定方面的摘要。我们提出的模型GeoSumm在三个意见摘要数据集上实现了最先进的性能。我们执行其他实验来分析模型的功能,并展示跨不同域{\ x}的概括能力。
translated by 谷歌翻译
机器学习系统通常被部署用于做出关键决策,例如信用贷款,招聘等。在做出决策时,此类系统通常会在其中间表示中对用户的人口统计信息(例如性别,年龄)进行编码。这可能会导致对特定人口统计的决定。先前的工作集中在中间表示方面,以确保公正的决策。但是,随着任务或人口统计分布的变化,这些方法无法保持公平。为了确保野外的公平性,对于系统来说,适应以渐进方式访问新数据的更改很重要。在这项工作中,我们建议通过在渐进学习环境中介绍学习公平表示的问题来解决此问题。为此,我们介绍了公平意识的增量表示学习(FAIRL),这是一种代表学习系统,可以维持公平,同时逐步学习新任务。 Fairl能够通过控制学习表示的速度延伸功能来实现公平和学习新任务。我们的经验评估表明,Fairl能够在目标任务上实现高性能的同时做出公正的决定,表现优于几个基线。
translated by 谷歌翻译
原型网络(PN)是一个简单而有效的射击学习策略。这是一种基于公制的元学习技术,通过计算欧几里得距离到每个类的原型表示,可以执行分类。常规的PN属性对所有样品的重要性都具有相同的重要性,并通过简单地平均属于每个类的支持样品嵌入来生成原型。在这项工作中,我们提出了一种新颖的PN版本,该版本将权重归因于对应于它们对支持样本分布的影响的样品。根据样品分布的平均嵌入(包括样本和排除样品的平均嵌入)之间的最大平均差异(MMD)计算样品的影响权重。此外,在没有该样品的情况下,使用MMD根据分布的变化来测量样品的影响因子。
translated by 谷歌翻译
通过机器学习模型学到的文本表示通常编码用户的不良人口统计信息。基于这些表示形式的预测模型可以依靠此类信息,从而产生偏见的决策。我们提出了一种新颖的偏见技术,即公平意识的速率最大化(农场),该技术使用速率依赖函数来消除受保护的信息,以表示属于相同受保护的属性类别的实例不相关。Farm能够在有或没有目标任务的情况下进行辩论式表示。还可以适应农场同时删除有关多个受保护属性的信息。经验评估表明,Farm在几个数据集上实现了最新的性能,并且学会的表示形式泄漏了受保护的属性信息明显减少,以防止非线性探测网络攻击。
translated by 谷歌翻译
在车辆场景中的毫米波链路的光束选择是一个具有挑战性的问题,因为所有候选光束对之间的详尽搜索都不能在短接触时间内被确认完成。我们通过利用像LIDAR,相机图像和GPS等传感器收集的多模级数据来解决这一问题。我们提出了可以在本地以及移动边缘计算中心(MEC)本地执行的个人方式和分布式融合的深度学习(F-DL)架构,并研究相关权衡。我们还制定和解决优化问题,以考虑实际的光束搜索,MEC处理和传感器到MEC数据传送延迟开销,用于确定上述F-DL架构的输出尺寸。在公开的合成和本土现实世界数据集上进行的广泛评估结果分别在古典RF光束上释放出95%和96%的束选择速度提高。在预测前10个最佳光束对中,F-DL还优于最先进的技术20-22%。
translated by 谷歌翻译
在IEEE 802.11基于WiFi的波形中,接收器使用称为传统短训练场(L-STF)的前导码的第一字段执行粗略的时间和频率同步。 L-STF占据前导码长的40%,占用的通话时间为32美元。通过降低通信开销的目标,我们提出了一种修改的波形,通过消除L-STF来降低前导码长度。为了解码这种修改的波形,我们提出了一种被称为PRONTO的机器学习(ML)方案,其使用其他前导字段执行粗略时间和频率估计,特别是传统的长训练字段(L-LTF)。我们的贡献是三倍:(i)我们展示了Pronto,用于数据包检测和粗CFO估计的定制卷积神经网络(CNN),以及用于稳健训练的数据增强步骤。 (ii)我们提出了一种广义决策流程,使PRONTO与包括标准L-STF的传统波形兼容。 (iii)我们从软件定义的无线电(SDR)的测试平面上验证了空中WiFi数据集的结果。我们的评估表明,PRONTO可以以100%的精度执行数据包检测,并且粗略CFO估计,误差小于3%。我们证明Pronto提供高达40%的前导码减少,没有误码率(BER)劣化。最后,我们通过通过相应的CPU实现,通过GPU并行化进行实验地显示通过GPU并行化实现的加速。
translated by 谷歌翻译
原型网络(PN)是一个简单但有效的几次学习策略。它是一种基于度量的元学习技术,通过计算欧几里德距离到每个类的原型表示来执行分类。传统的PN属性对所有样本的重要性相同,并通过简单地平均属于每个类的支持样本嵌入来生成原型。在这项工作中,我们提出了一种新颖的PN版本,该PN属于权重,以支持对应于它们对支持样品分布的影响的样本。基于样品分布的平均嵌入的最大平均差异(MMD)计算样品的影响力,包括并排除样品。通过将其在三个不同的基准皮肤集数据集上与其他基线PN的性能进行比较,通过将其性能与其他基线PNS进行比较来进行我们提出的影响PN(IPNET)的综合评估。 IPNet优于所有三个数据集的引人注目的所有基线模型,以及各种N-Way,K-Shot分类任务。跨域适应实验的调查结果进一步建立了IPNET的稳健性和普遍性。
translated by 谷歌翻译
Unsupervised learning-based anomaly detection in latent space has gained importance since discriminating anomalies from normal data becomes difficult in high-dimensional space. Both density estimation and distance-based methods to detect anomalies in latent space have been explored in the past. These methods prove that retaining valuable properties of input data in latent space helps in the better reconstruction of test data. Moreover, real-world sensor data is skewed and non-Gaussian in nature, making mean-based estimators unreliable for skewed data. Again, anomaly detection methods based on reconstruction error rely on Euclidean distance, which does not consider useful correlation information in the feature space and also fails to accurately reconstruct the data when it deviates from the training distribution. In this work, we address the limitations of reconstruction error-based autoencoders and propose a kernelized autoencoder that leverages a robust form of Mahalanobis distance (MD) to measure latent dimension correlation to effectively detect both near and far anomalies. This hybrid loss is aided by the principle of maximizing the mutual information gain between the latent dimension and the high-dimensional prior data space by maximizing the entropy of the latent space while preserving useful correlation information of the original data in the low-dimensional latent space. The multi-objective function has two goals -- it measures correlation information in the latent feature space in the form of robust MD distance and simultaneously tries to preserve useful correlation information from the original data space in the latent space by maximizing mutual information between the prior and latent space.
translated by 谷歌翻译